[返回和气生财首页]·[所有跟帖]·[ 回复本帖 ] ·[热门原创] ·[繁體閱讀]·[坛主管理]

深度学习(Deep Learning)从零基础达到入门级水平

送交者: 桂花酒[♂★★★和气生财★★★♂] 于 2020-04-14 2:49 已读 675 次  

桂花酒的个人频道

+关注

转载--------------------------------------------------------------------------------weifenglin1997最后发布于2017-12-05 18:53:25阅读数4373
发布于2017-12-05 18:53:25

本文标签:   机器学习 TensorFlow Google机器智能 人工智能

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?

现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。

深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。

我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。

最左边的层叫做 输入层 ,这层负责接收输入数据;最右边的层叫 输出层 ,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做 隐藏层 。

隐藏层比较多(大于2)的神经网络叫做深度神经网络。

而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络的表达力更强。

事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元—— 神经元 。神经元也叫做 感知器 。

感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

可以看到,一个感知器有如下组成部分:

输入权值   一个感知器可以接收多个输入 ( , ,..., ∣ ∈ R ) , 每个输入上有一个 权值 w i ∈ R , 此外还有一个 偏置项 b ∈ R , 就是上图中的 w 0 。

激活函数   感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数f来作为激活函数:

输出  感知器的输出由下面这个公式来计算

如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

例子:用感知器实现 and 函数

我们设计一个感知器,让它来实现and运算。程序员都知道,and是一个二元函数(带有两个参数个参数 x1 和 x2 ),下面是它的真 值表:

为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。

我们令

而激活函数 就是前面写出来的 阶跃函数 ,这时,感知器就相当于 and 函数

不明白?我们验算一下:

输入上面真值表的第一行,即 x1=0;x2=0 ,那么根据公式( 1),计算输出:

也就是当 x1 x2 都为 0 的时候,为 0 , 这就是 真值表 的第一行。读者可以自行验证上述真值表的第二、三、四行。

例子:用感知器实现 or 函数

同样,我们也可以用感知器来实现 or 运算。仅仅需要把偏置项 b 的值设置为-0.3就可以了。我们验算一下,下面是 or 运算的 真值表 :

我们来验算第二行,这时的输入是 x 1 = 0 ; x 2 = 1 ,带入公式 (1) :

也就是当 x 1 x 2 都为 0 的时候, y 为 0, 这就是 真值表 的第一行。读者可以自行验证上述真值表的第二、三、四行。

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何 线性分类 或 线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是 二分类 问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示, and 运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的 感知器规则 迭代的修改 w i 和 b ,直到训练完成。

其中

wi 是与输入 xi 对应的权重项, b 是偏置项。事实上,可以把 b看作是值永远为1的输入 xb 所对应的权重。 t 是训练样本的实际值,一般称之为label。而 y 是感知器的输出值,它是根据公式(1)计算得出。 α 是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。

编程实战:实现感知器

对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。

面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。

没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。

下面是感知器类的实现,非常简单。去掉注释只有27行,而且还包括为了美观(每行不超过60个字符)而增加的很多换行。

class Perceptron(object):

# 初始化感知器,设置输入参数的个数,以及激活函数。

# 激活函数的类型为double -> double

def __init__(self, input_num, activator):

self.activator = activator # 权重向量初始化为0

self.weights = map(lambda _: 0.0, range(input_num))

# 偏置项初始化为0

self.bias = 0.0

# 打印学习到的权重、偏置项

def __str__(self):

return 'weights :%s
bias :%f'
% (self.weights, self.bias)

# 输入向量,输出感知器的计算结果

def predict(self, input_vec):

# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起

# 变成[(x1,w1),(x2,w2),(x3,w3),...]

# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]

# 最后利用reduce求和

return self.activator(

reduce(lambda a, b: a + b,

map(lambda (x, w): x * w,

zip(input_vec, self.weights))

, 0.0) + self.bias)

# 输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率

def train(self, input_vecs, labels, iteration, rate):

for i in range(iteration):

self._one_iteration(input_vecs, labels, rate)

# 一次迭代,把所有的训练数据过一遍

def _one_iteration(self, input_vecs, labels, rate):

# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]

# 而每个训练样本是(input_vec, label)

samples = zip(input_vecs, labels)

# 对每个样本,按照感知器规则更新权重

for (input_vec, label) in samples:

# 计算感知器在当前权重下的输出

output = self.predict(input_vec)

# 更新权重

self._update_weights(input_vec, output, label, rate)

# 按照感知器规则更新权重

def _update_weights(self, input_vec, output, label, rate):

# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起

# 变成[(x1,w1),(x2,w2),(x3,w3),...]

# 然后利用感知器规则更新权重

delta = label - output

self.weights = map(

lambda (x, w): w + rate * delta * x,

zip(input_vec, self.weights))

# 更新bias

self.bias += rate * delta

接下来,我们利用这个感知器类去实现 and 函数。

#定义激活函数fdef f(x):

return 1 if x > 0 else 0# 基于and真值表构建训练数据

def get_training_dataset():

# 构建训练数据

# 输入向量列表

input_vecs = [[1,1], [0,0], [1,0], [0,1]]

# 期望的输出列表,注意要与输入一一对应

# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0

labels = [1, 0, 0, 0]

return input_vecs, labels # 使用and真值表训练感知器def train_and_perceptron():

# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f

p = Perceptron(2, f)

# 训练,迭代10轮, 学习速率为0.1

input_vecs, labels = get_training_dataset()

p.train(input_vecs, labels, 10, 0.1)

#返回训练好的感知器

return pif __name__ == '__main__':

# 训练and感知器

and_perception = train_and_perceptron()

# 打印训练获得的权重

print and_perception # 测试

print '1 and 1 = %d' % and_perception.predict([1, 1])

print '0 and 0 = %d' % and_perception.predict([0, 0])

print '1 and 0 = %d' % and_perception.predict([1, 0])

print '0 and 1 = %d' % and_perception.predict([0, 1])

将上述程序保存为perceptron.py文件,通过命令行执行这个程序,其运行结果为:

神奇吧!感知器竟然完全实现了 and 函数。读者可以尝试一下利用感知器实现其它函数。

小结

终于看(写)到小结了...,大家都累了哈哈哈。

对于零基础的你来说,走到这里应该已经很烧脑了吧。没关系,休息一下。值得高兴的是,你终于已经走出了深度学习入门的第一步,这是巨大的进步;坏消息是,这仅仅是最简单的部分,后面还有无数艰难险阻等着你。

不过,你学的困难往往意味着别人学的也困难,掌握一门高门槛的技艺,进可糊口退可装逼,是很值得的。

预告一下,在我的下篇文章中,我们将讨论另外一种感知器: 线性单元 ,并由此引出一种可能是最最重要的优化算法: 梯度下降 算法。敬请期待!

参考资料

Tom M. Mitchell, "机器学习", 曾华军等译, 机械工业出版社

写在最后:FOR Freedom 看看外边的世界,以及IT这一行,少不了去Google查资料,最后,安利一个V——PN代理。一枝红杏 加速器,去Google查资料是绝对首选,连接速度快,使用也方便。我买的是99¥一年的,通过这个链接(http://my.yizhihongxing.com/aff.php?aff=2509)注册后付费时输上优惠码wh80,平摊下来,每月才7块钱,特实惠。

本文标签:   机器学习 TensorFlow Google机器智能 人工智能 

转自 SUN'S BLOG - 专注互联网知识,分享互联网精神!

原文地址: 《深度学习(Deep Learning)从零基础达到入门级水平》 

相关阅读什么是TensorFlow?TensorFlow 中文版资源大全

相关阅读: Tensorflow【机器学习】:关于fast neural style【快速风格化图像】的理解和实现》 

相关阅读:我是 G 粉,一直关注 Google,最近 Google 有一些小动作,可能很多人不太了解

相关阅读:机器学习引领认知领域的技术创新,那么SaaS行业会被机器学习如何改变?

相关阅读:VPS 教程系列:Dnsmasq + DNSCrypt + SNI Proxy 顺畅访问 Google 配置教程

相关阅读: 对程序员有用:2017最新能上Google的hosts文件下载及总结网友遇到的各种hosts问题解决方法及配置详解

相关阅读:Aaron Swartz – 互联网天才开挂的人生历程:每时每刻都问自己,现在这世界有什么最重要的事是我能参与去做的?》 
相关阅读:网站环境apache + php + mysql 的XAMPP,如何实现一个服务器上配置多个网站?

相关阅读:什么是工程师文化?各位工程师是为什么活的?作为一个IT或互联网公司为什么要工程师文

相关阅读: 《win10永久激活教程以及如何查看windows系统是不是永久激活?》

相关BLOG:SUN’S BLOG - 专注互联网知识,分享互联网精神!去看看:www.whosmall.com

原文地址:http://whosmall.com/?post=323


附录
基础入门深度学习(1) - 感知器

机器学习 深度学习入门


无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。

文章列表

零基础入门深度学习(1) - 感知器
https://www.zybuluo.com/hanbingtao/note/433855
零基础入门深度学习(2) - 线性单元和梯度下降
https://www.zybuluo.com/hanbingtao/note/448086
零基础入门深度学习(3) - 神经网络和反向传播算法
https://www.zybuluo.com/hanbingtao/note/476663
零基础入门深度学习(4) - 卷积神经网络
https://www.zybuluo.com/hanbingtao/note/485480
零基础入门深度学习(5) - 循环神经网络
https://zybuluo.com/hanbingtao/note/541458
零基础入门深度学习(6) - 长短时记忆网络(LSTM)
https://zybuluo.com/hanbingtao/note/581764
零基础入门深度学习(7) - 递归神经网络
https://zybuluo.com/hanbingtao/note/626300

深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层

隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

可以看到,一个感知器有如下组成部分:

输入权值 一个感知器可以接收多个输入

,每个输入上有一个权值

,此外还有一个偏置项

,就是上图中的

激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数

来作为激活函数:

输出 感知器的输出由下面这个公式来计算

公式

如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

例子:用感知器实现and函数

我们设计一个感知器,让它来实现and运算。程序员都知道,and是一个二元函数(带有两个参数

),下面是它的真值表

000
010
100
111

为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。

我们令

,而激活函数

就是前面写出来的阶跃函数,这时,感知器就相当于and函数。不明白?我们验算一下:

输入上面真值表的第一行,即

,那么根据公式(1),计算输出:


也就是当

都为0的时候,

为0,这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。

例子:用感知器实现or函数

同样,我们也可以用感知器来实现or运算。仅仅需要把偏置项

的值设置为-0.3就可以了。我们验算一下,下面是or运算的真值表

000
011
101
111

我们来验算第二行,这时的输入是

,带入公式(1):

也就是当

时,

为1,即or真值表第二行。读者可以自行验证其它行。

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代的修改

,直到训练完成。

其中:

是与输入

对应的权重项,

是偏置项。事实上,可以把

看作是值永远为1的输入

所对应的权重。

是训练样本的实际值,一般称之为label。而

是感知器的输出值,它是根据公式(1)计算得出。

是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。

每次从训练数据中取出一个样本的输入向量

,使用感知器计算其输出

,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。

编程实战:实现感知器

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/perceptron.py (python2.7)

对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。

下面是感知器类的实现,非常简单。去掉注释只有27行,而且还包括为了美观(每行不超过60个字符)而增加的很多换行。

class Perceptron(object): def __init__(self, input_num, activator): ''' 初始化感知器,设置输入参数的个数,以及激活函数。 激活函数的类型为double -> double ''' self.activator = activator # 权重向量初始化为0 self.weights = [0.0 for _ in range(input_num)] # 偏置项初始化为0 self.bias = 0.0 def __str__(self): ''' 打印学习到的权重、偏置项 ''' return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias) def predict(self, input_vec): ''' 输入向量,输出感知器的计算结果 ''' # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起 # 变成[(x1,w1),(x2,w2),(x3,w3),...] # 然后利用map函数计算[x1*w1, x2*w2, x3*w3] # 最后利用reduce求和 return self.activator( reduce(lambda a, b: a + b, map(lambda (x, w): x * w, zip(input_vec, self.weights)) , 0.0) + self.bias) def train(self, input_vecs, labels, iteration, rate): ''' 输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率 ''' for i in range(iteration): self._one_iteration(input_vecs, labels, rate) def _one_iteration(self, input_vecs, labels, rate): ''' 一次迭代,把所有的训练数据过一遍 ''' # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...] # 而每个训练样本是(input_vec, label) samples = zip(input_vecs, labels) # 对每个样本,按照感知器规则更新权重 for (input_vec, label) in samples: # 计算感知器在当前权重下的输出 output = self.predict(input_vec) # 更新权重 self._update_weights(input_vec, output, label, rate) def _update_weights(self, input_vec, output, label, rate): ''' 按照感知器规则更新权重 ''' # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起 # 变成[(x1,w1),(x2,w2),(x3,w3),...] # 然后利用感知器规则更新权重 delta = label - output self.weights = map( lambda (x, w): w + rate * delta * x, zip(input_vec, self.weights)) # 更新bias self.bias += rate * delta

接下来,我们利用这个感知器类去实现and函数。

def f(x): ''' 定义激活函数f ''' return 1 if x > 0 else 0def get_training_dataset(): ''' 基于and真值表构建训练数据 ''' # 构建训练数据 # 输入向量列表 input_vecs = [[1,1], [0,0], [1,0], [0,1]] # 期望的输出列表,注意要与输入一一对应 # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0 labels = [1, 0, 0, 0] return input_vecs, labels def train_and_perceptron(): ''' 使用and真值表训练感知器 ''' # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f p = Perceptron(2, f) # 训练,迭代10轮, 学习速率为0.1 input_vecs, labels = get_training_dataset() p.train(input_vecs, labels, 10, 0.1) #返回训练好的感知器 return pif __name__ == '__main__': # 训练and感知器 and_perception = train_and_perceptron() # 打印训练获得的权重 print and_perception # 测试 print '1 and 1 = %d' % and_perception.predict([1, 1]) print '0 and 0 = %d' % and_perception.predict([0, 0]) print '1 and 0 = %d' % and_perception.predict([1, 0]) print '0 and 1 = %d' % and_perception.predict([0, 1])

将上述程序保存为perceptron.py文件,通过命令行执行这个程序,其运行结果为:

神奇吧!感知器竟然完全实现了and函数。读者可以尝试一下利用感知器实现其它函数。

小结

终于看(写)到小结了...,大家都累了。对于零基础的你来说,走到这里应该已经很烧脑了吧。没关系,休息一下。值得高兴的是,你终于已经走出了深度学习入门的第一步,这是巨大的进步;坏消息是,这仅仅是最简单的部分,后面还有无数艰难险阻等着你。不过,你学的困难往往意味着别人学的也困难,掌握一门高门槛的技艺,进可糊口退可装逼,是很值得的。

下一篇文章,我们将讨论另外一种感知器:线性单元,并由此引出一种可能是最最重要的优化算法:梯度下降算法。

参考资料

Tom M. Mitchell, "机器学习", 曾华军等译, 机械工业出版社

贴主:桂花酒于2020_04_14 2:55:19编辑

贴主:桂花酒于2020_04_14 2:56:52编辑

贴主:桂花酒于2020_04_14 3:14:49编辑
贴主:桂花酒于2020_04_14 3:26:10编辑
喜欢桂花酒朋友的这个贴子的话, 请点这里投票,“赞”助支持!

内容来自网友分享,若违规或者侵犯您的权益,请联系我们

所有跟帖:   ( 主贴楼主有权删除不文明回复,拉黑不受欢迎的用户 )


用户名: 密码: [--注册ID--]

标 题:

粗体 斜体 下划线 居中 插入图片插入图片 插入Flash插入Flash动画


     图片上传  Youtube代码器  预览辅助

打开微信,扫一扫[Scan QR Code]
进入内容页点击屏幕右上分享按钮

楼主前期社区热帖:

>>>>查看更多楼主社区动态...



[ 留园条例 ] [ 广告服务 ] [ 联系我们 ] [ 个人帐户 ] [ 创建您的定制新论坛频道 ] [ Contact us ]